Purpose: Studies have shown the effects of surgical treatments for trapeziometacarpal osteoarthritis on thumb biomechanics; however, the biomechanical effects on the wrist have not been reported. This study aimed to quantify alterations in wrist muscle forces following trapeziectomy with or without ligament reconstruction and replacement.
Methods: A validated physiological wrist simulator replicated cyclic wrist motions in cadaveric specimens by applying tensile loads to 6 muscles. Muscle forces required to move the intact wrist were compared with those required after performing trapeziectomy, suture suspension arthroplasty, prosthetic replacement, and ligament reconstruction with tendon interposition (LRTI).
Results: Trapeziectomy required higher abductor pollicis longus forces in flexion and higher flexor carpi radialis forces coupled with lower extensor carpi ulnaris forces in radial deviation. Of the 3 surgical reconstructions tested post-trapeziectomy, wrist muscle forces following LRTI were closest to those observed in the intact case throughout the range of all simulated motions.
Conclusions: This study shows that wrist biomechanics were significantly altered following trapeziectomy, and of the reconstructions tested, LRTI most closely resembled the intact biomechanics in this cadaveric model.
Clinical relevance: Trapeziectomy, as a standalone procedure in the treatment of trapeziometacarpal osteoarthritis, may result in the formation of a potentially unfilled trapezial gap, leading to higher wrist muscle forces. This biomechanical alteration could be associated with clinically important outcomes, such as pain and/or joint instability.
Keywords: Arthroplasty; LRTI; simulator; trapeziectomy; trapeziometacarpal osteoarthritis.
Copyright © 2020 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.