Fraxinus rhynchophylla belongs to the family of Oleaceae and also called as Chinese ash wood possesses various pharmacological properties such as neuroprotective, antimicrobial, anti-inflammatory, etc. Therefore we synthesized ZnO nanoparticles using Fraxinus rhynchophylla wood extract as reducing and capping agent. The synthesized nanoparticles were characterized with the aid of UV-Spec, DLS, FT-IR and TEM analysis. Green synthesized ZnO nanoparticles were then assessed for anti-nociceptive property by using various nociception models such as thermal stress-induced, acetic acid, glutamate, capsaicin, and formalin-induced nociception. The sedative effect of synthesized ZnO nanoparticles was evaluated with an open field test. UV-Spectroscopic analysis confirms the formation of ZnO nanoparticles and the characterization studies DLS, FT-IR, and TEM analysis prove it has ideal nanoparticle can be used as a nano-drug. Results of both thermal stress-induced methods hot plate and tail immersion nociception test verified the synthesized ZnO nanoparticles are a potent antinociceptive drug. ZnO nanoparticles effectively reduced the abdominal writhes in acetic acid-induced nociception and it also significantly decreased the nociception activity in another glutamate, capsaicin, and formalin-induced nociception models. Open field experiment proved that synthesized ZnO nanoparticles are less sedative compared to the standard antinociceptive drug morphine. Overall our findings authentically confirm ZnO nanoparticles synthesized from Fraxinus rhynchophylla wood extract is a novel drug that persuasively reduces nociception in different nociceptive induced mice models and can be the best alternative for allopathic drugs which renders severe side effects.
Keywords: Antinociception; Ash wood; Fraxinus rhynchophylla; Green nanosynthesis; Nociceptive models; ZnONP.
Copyright © 2019 Elsevier B.V. All rights reserved.