A novel polyaniline (PANI)/Eu3+ nanofiber sensing film was prepared in the presence of Eu(NO3)3 which serves as structure-directed agent. The morphological, component, crystallinity and electrochemical properties were carried out by using Scanning Electron Microscope (SEM), Energy-Dispersive X-ray (EDX), Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. The results indicated the nanofiber-like network with porous structure appeared in the PANI embedded by Eu3+ ions, thereby leading to large specific surface area. Furthermore, the PANI/Eu3+ nanofibers were grown onto the inner wall of capillary glass to form the tube sensor. By the sensing measurements, this tube sensor enabled the detection of low-volume (0.3 mL) NH3 for response 435% at concentration of 0.25 ppm with a short response time (5 s) and recovery time (5 s), and the performances of reproducibility and selectivity were also excellent. The above results demonstrated the potential application of PANI/Eu3+ tube sensor for low-volume NH3 gas.
Keywords: Eu(3+) dopant; Low-volume gas detection; NH(3) sensing; Polyaniline (PANI); Tube sensor.
Copyright © 2019 Elsevier B.V. All rights reserved.