As Prussian Blue analogues (PBAs) represent one of the most classical families of coordination compounds and exhibit versatile catalytic activities, PBAs have been considered as useful heterogeneous catalysts for reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Nevertheless, while Cu has been a well-proven transition metal for 4-NP reduction, especially, due to their ability to attain pronounced conversions of reactants under mild conditions, environmental friendliness and great stability. Nevertheless, while Cu has been a well-proven transition metal for 4-NP reduction, Cu-based PBA has never been developed and thoroughly investigated for 4-NP reduction. Thus, in this study, copper hexacyanoferrate, CuII3[Fe(CN)6]2 (CuFeCN) is particularly synthesized and proposed for the first time as a catalyst for reduction of 4-NP in the presence of NaBH4. CuFeCN exhibits a very high catalytic activity towards reduction of 4-NP to 4-AP with 100% conversion within 4 min. The activity factor (AF) at room temperature, 8057.14 s-1 g-1, is between 1 and 2 orders higher than all other MFeCN Prussian blue analogues (M = Co, Fe, Ni, Zn, and Mn). In addition, CuFeCN shows excellent reusability to achieve 100% conversion of 4-NP to 4-AP with highly stable rate constants over successive 7 cycles. The activation energy (Ea) and turn over frequency (TOF) for the reduction of 4-NP to 4-AP catalyzed by CuFeCN system are determined as 24.6 kJ mol-1 and 36.93 min-1, respectively, which are both significantly more superior than most of reported catalysts in literatures. These advantageous properties make CuFeCN ideal to be developed into a promising catalyst for elimination of nitroaromatic contaminants in water.
Keywords: 4-Aminophenol; 4-Nitrophenol; Activation energy; Catalytic activity; Prussian blue analogue; Reduction; Sodium borohydride; Turn over frequency.
Copyright © 2019 Elsevier B.V. All rights reserved.