In the present work, a hierarchical composite of rose-like VS2 @S/N-doped carbon (VS2 @SNC) with expanded (001) planes is successfully fabricated through a facile synthetic route. Notably, the d-spacing of (001) planes is expanded to 0.92 nm, which is proved to dramatically reduce the energy barrier for Li+ diffusion in the composite of VS2 @SNC by density functional theory calculation. On the other hand, the S/N-doped carbon in the composite greatly promotes the electrical conductivity and enhances the structural stability. In addition, the hierarchical structure of VS2 @SNC facilitates rapid electrolyte diffusion and increases the contact area between the electrode and electrolyte simultaneously. Benefiting from the merits mentioned above, the VS2 @SNC electrode exhibits excellent electrochemical properties, such as a large reversible capacity of 971.6 mA h g-1 at 0.2 A g-1 , an extremely high rate capability of 772.1 mA h g-1 at 10 A g-1 , and a remarkable cycling stability up to 600 cycles at 8 A g-1 with a capacity of 684.5 mA h g-1 , making it a promising candidate as an anode material for lithium-ion batteries.
Keywords: Li-ion batteries; S/N-doped carbon; electrochemical properties; expanded (001) planes; vanadium disulfide.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.