Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns (HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY significantly improved the growth, proliferation, and tendon-specific gene expressions of human adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin beta-4 (Tβ4) loaded PLGA/PLA HY presented a sustained drug release manner for 28 days and showed an additive effect on promoting HADMSC migration, proliferation, and tenogenic differentiation. Collectively, the combination of Tβ4 with the nano-topography of PLGA/PLA HY might be an efficient strategy to promote tenogenesis of adult stem cells for tendon tissue engineering.
Keywords: Cell migration; Core-sheath yarn; Drug delivery; Nanofiber yarn; Tenogenic differentiation.
Copyright © 2019 Elsevier B.V. All rights reserved.