Interleukin-10 (IL-10) displays well-documented anti-inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL-10 negatively regulates microRNA-7025-5p (miR-7025-5p), the down-regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin-like growth factor 1 receptor (IGF1R) is a miR-7025-5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre-injection of IL-10 leads to increased bone formation, while agomiR-7025-5p injection delays fracture healing. Taken together, these results indicate that IL-10 induces osteoblast differentiation via regulation of the miR-7025-5p/IGF1R axis. IL-10 therefore represents a promising therapeutic strategy to promote fracture healing.
Keywords: Fracture; IGF1R; IL-10; mRNA; miRNA; osteoblast.
© 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.