Objective: Delayed thrombolytic therapy with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier (BBB) breakdown after ischemic stroke and lead to catastrophic hemorrhagic transformation (HT). Rosiglitazone(RSG), a widely used antidiabetic drug that activates peroxisome proliferator-activated receptor-γ (PPAR-γ), has been shown to protect against cerebral ischemia through promoting poststroke microglial polarization toward the beneficial anti-inflammatory phenotype. However, whether RSG can alleviate HT after delayed tPA treatment remains unknown. In this study, we sort to examine the role of RSG on tPA-induced HT after stroke.
Methods and results: We used the murine suture middle cerebral artery occlusion (MCAO) models of stroke followed by delayed administration of tPA (10 mg/kg, 2 hours after suture occlusion) to investigate the therapeutic potential of RSG against tPA-induced HT. When RSG(6 mg/kg) was intraperitoneally administered 1 hour before MCAO in tPA-treated MCAO mice, HT in the ischemic territory was significantly attenuated 1 day after stroke. In the tPA-treated MCAO mice, we found RSG significantly mitigated BBB disruption and hemorrhage development compared to tPA-alone-treated stroke mice. Using flow cytometry and immunostaining, we confirmed that the expression of CD206 was significantly upregulated while the expression of iNOS was down-regulated in microglia of the RSG-treated mice. We further found that the expression of Arg-1 was also upregulated in those tPA and RSG-treated stroke mice and the protection against tPA-induced HT and BBB disruption in these mice were abolished in the presence of PPAR-γ antagonist GW9662 (4 mg/kg, 1 hour before dMCAO through intraperitoneal injection).
Conclusions: RSG treatment protects against BBB damage and ameliorates HT in delayed tPA-treated stroke mice by activating PPAR-γ and favoring microglial polarization toward anti-inflammatory phenotype.
Keywords: Rosiglitazone; blood-brain barrier; cerebral ischemia; hemorrhagic transformation; microglia; stroke; tPA.
© 2019 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.