A simple, rapid and accurate stability-indicating HPLC assay was developed for the determination of acyclovir and lidocaine in topical formulations. Chromatographic separation of acyclovir and lidocaine was achieved using a reversed-phase C18 column and a gradient mobile phase (20 mm ammonium acetate pH 3.5 in water and acetonitrile). The degradation products of acyclovir and lidocaine in the samples were analyzed by ultra performance liquid chromatography-time of flight mass spectrometry. The HPLC method successfully resolved the analytes from the impurities and degradation products in the topical formulation. Furthermore, the method detected the analytes from the human skin leachables following the extraction of the analytes in the skin homogenate samples. The method showed linearity over wide ranges of 5-500 and 10-200 μg/ml for acyclovir and lidocaine in the topical product, respectively, with a correlation coefficient (r2 ) >0.9995. The relative standard deviations for precision, repeatability, and robustness of the method validation assays were <2%. The skin extraction efficiency for acyclovir and lidocaine was 92.8 ± 0.7% and 91.3 ± 3.2%, respectively, with no interference from the skin leachables. Thus, simultaneous quantification of acyclovir and lidocaine in the topical formulations was achieved.
Keywords: HPLC method; acyclovir; forced degradation; lidocaine; stability-indicating method.
© 2019 John Wiley & Sons, Ltd.