TaVrn1, encoding a MADS-box transcription factor (TF), is the central regulator of wheat vernalization-induced flowering. Considering that the MADS-box TF usually works by forming hetero- or homodimers, we conducted yeast-two-hybrid screening and identified an SVP-like MADS-box protein TaVrt2 interacting with TaVrn1. However, the specific function of TaVrt2 and the biological implication of its interaction with TaVrn1 remained unknown. We validated the function of TaVrt2 and TaVrn1 by wheat transgenic experiments and their interaction through multiple protein-binding assays. Population genetic analysis also was used to display their interplay. Transcriptomic sequencing and chromatin immunoprecipitation assays were performed to identify their common targets. TaVrt2 and TaVrn1 are flowering promoters in the vernalization pathway and interact physically in vitro, in planta and in wheat cells. Additionally, TaVrt2 and TaVrn1 were significantly induced in leaves by vernalization, suggesting their spatio-temporal interaction during vernalization. Genetic analysis indicated that TaVrt2 and TaVrn1 had significant epistatic effects on flowering time. Furthermore, native TaVrn1 was up-regulated significantly in TaVrn1-OE (overexpression) and TaVrt2-OE lines. Moreover, TaVrt2 could bind with TaVrn1 promoter directly. A TaVrt2-mediated positive feedback loop of TaVrn1 during vernalization was proposed, providing additional understanding on the regulatory mechanism underlying vernalization-induced flowering.
Keywords: SVP; TaVrn1; TaVrt2; feedback loop; flowering time; vernalization; wheat.
© 2019 The Authors New Phytologist © 2019 New Phytologist Trust.