Interfacial Engineering in PtNiCo/NiCoS Nanowires for Enhanced Electrocatalysis and Electroanalysis

Chemistry. 2020 Mar 26;26(18):4032-4038. doi: 10.1002/chem.201904473. Epub 2019 Dec 27.

Abstract

Searching for new anti-poisoning Pt-based catalysts with enhanced activity for alcohol oxidation is the key in direct alcohol fuel cells (DAFCs). However, in the traditional strategy for designing bimetallic or multimetallic alloy is still difficult to achieve a satisfactory heterogeneous electrocatalyst because the activity often depends on only the surface atoms. Herein, we fabricate the multicomponent active sites by creating a sulfide structure on 1D PtNiCo trimetallic nanowires (NWs), to give a PtNiCo/NiCoS interface NWs (IFNWs). Owing to the presence of sulfide interfaces, the PtNiCo/NiCoS IFNWs enable an impressive methanol/ethanol oxidation reaction (MOR/EOR) performance and excellent anti-CO poisoning tolerance. They have the MOR and EOR mass activities of 2.25 Amg-1 Pt and 1.62 Amg-1 Pt , around 1.26, 3.21 and 1.46, 2.96 times higher than those of PtNiCo NWs and commercial Pt/C, respectively. CO-stripping and XPS measurements further demonstrate that the new interfacial structure and optimal bonding of Pt-CO can result in accelerating the removal of surface adsorbed carbonaceous intermediates. Moreover, such a unique structure has also demonstrated a much-improved ability for the electrochemical detection of some important molecules (H2 O2 and NH2 NH2 ).

Keywords: Pt-based catalyst; alcohol oxidation reaction; electrocatalysis; interface; nanowires.