Oral allergy syndrome (OAS) describes an allergic reaction where an individual sensitized by pollen allergens develops symptoms after eating certain foods. OAS is caused by cross-reactivity among a class of proteins ubiquitous in plants called pathogenesis related class 10 (PR-10) proteins. The best characterized PR-10 protein is Bet v 1 from birch pollen and its putative function is binding hydrophobic ligands. We cloned a subset of seven recombinant PR-10 proteins from pollens, peanuts, and hazelnuts and developed a standard purification method for them. Immunoglobulin E (IgE) binding of purified PR-10 proteins was analyzed by ImmunoCAP ISAC microarray and enzyme-linked immunosorbent assays (ELISAs) with sera from allergic patients. We investigated the binding activities of PR10s by testing 16 different ligands with each protein and compared their secondary structures using circular dichroism (CD). The PR-10s in this study had very similar CD spectra, but bound IgE with very different affinities. All seven proteins showed a similar pattern of binding to the polyphenol ligands (resveratrol, flavonoids, and isoflavones) and variable binding to other potential ligands (fatty acids, sterols, and plant hormones). We suggest our protocol has the potential to be a near-universal method for PR-10 purification that will facilitate further research into this important class of panallergens.
Keywords: IgE binding; flavonoids; hazelnut; ligand binding; panallergen; peanut; pollen; protein purification; structure.