Urbanization, one of the most extreme human-induced environmental changes, is negatively affecting biodiversity worldwide, strongly suggesting that we should reconcile urban development with conservation. Urbanization can follow two extreme types of development within a continuum: land sharing (buildings mixed with dispersed green space) or land sparing (buildings interspersed with green patches that concentrate biodiversity-supporting vegetation). Recent local-scale studies indicate that biodiversity is typically favored by land sparing. We investigated which of these two types of urbanization is associated with a higher taxonomic (i.e. species richness), functional, and phylogenetic diversity of birds. To do so, we collected information on breeding and wintering bird assemblages in 45 land-sharing and 45 land-sparing areas in nine European cities, which provide the first attempt to explore this question using a large geographical scale and temporal replication. We found that land-sharing urban areas were significantly associated with a higher taxonomic and functional diversity of birds during winter, but not during the breeding season (with only a marginally significant effect for functional diversity). We found no association between the type of urban development and phylogenetic diversity. Our findings indicate that not all components of avian diversity are similarly affected by these two means of urban planning and highlight the importance of integrating the temporal perspective into this kind of studies. Our results also offer useful information to the current debate about the trade-off between biodiversity conservation and human well-being in the context of land sharing and sparing urban practices. In addition, we found that certain small-scale urban landscape characteristics (i.e. few impervious surfaces, high water or tree cover) and human practices (i.e. bird feeders or plants with berries) can help maintaining more diverse urban bird assemblages. We provide specific suggestions for both policymakers and citizens that hopefully will help to create more biodiversity-friendly cities in the future.
Keywords: Birds; Functional diversity; Human-induced environmental change; Phylogenetic diversity; Taxonomic diversity; Urban ecology.
Copyright © 2019 Elsevier B.V. All rights reserved.