Targeted disruption of dual leucine zipper kinase and leucine zipper kinase promotes neuronal survival in a model of diffuse traumatic brain injury

Mol Neurodegener. 2019 Nov 27;14(1):44. doi: 10.1186/s13024-019-0345-1.

Abstract

Background: Traumatic brain injury (TBI) is a major cause of CNS neurodegeneration and has no disease-altering therapies. It is commonly associated with a specific type of biomechanical disruption of the axon called traumatic axonal injury (TAI), which often leads to axonal and sometimes perikaryal degeneration of CNS neurons. We have previously used genome-scale, arrayed RNA interference-based screens in primary mouse retinal ganglion cells (RGCs) to identify a pair of related kinases, dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) that are key mediators of cell death in response to simple axotomy. Moreover, we showed that DLK and LZK are the major upstream triggers for JUN N-terminal kinase (JNK) signaling following total axonal transection. However, the degree to which DLK/LZK are involved in TAI/TBI is unknown.

Methods: Here we used the impact acceleration (IA) model of diffuse TBI, which produces TAI in the visual system, and complementary genetic and pharmacologic approaches to disrupt DLK and LZK, and explored whether DLK and LZK play a role in RGC perikaryal and axonal degeneration in response to TAI.

Results: Our findings show that the IA model activates DLK/JNK/JUN signaling but, in contrast to axotomy, many RGCs are able to recover from the injury and terminate the activation of the pathway. Moreover, while DLK disruption is sufficient to suppress JUN phosphorylation, combined DLK and LZK inhibition is required to prevent RGC cell death. Finally, we show that the FDA-approved protein kinase inhibitor, sunitinib, which has activity against DLK and LZK, is able to produce similar increases in RGC survival.

Conclusion: The mitogen-activated kinase kinase kinases (MAP3Ks), DLK and LZK, participate in cell death signaling of CNS neurons in response to TBI. Moreover, sustained pharmacologic inhibition of DLK is neuroprotective, an effect creating an opportunity to potentially translate these findings to patients with TBI.

Keywords: Cell death; Concussion; DLK; Dual leucine zipper kinase; LZK; Optic neuropathy; Retinal ganglion cell; Traumatic axonal injury; Traumatic brain injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain Injuries, Traumatic / metabolism*
  • Brain Injuries, Traumatic / pathology
  • Cell Survival / physiology*
  • Disease Models, Animal
  • Leucine Zippers / drug effects
  • MAP Kinase Kinase Kinases / metabolism*
  • MAP Kinase Signaling System / drug effects
  • Male
  • Mice, Inbred C57BL
  • Neurons / drug effects
  • Neurons / metabolism*
  • Protein Kinase Inhibitors / pharmacology
  • Retinal Ganglion Cells / metabolism

Substances

  • Protein Kinase Inhibitors
  • Lzk protein, mouse
  • MAP Kinase Kinase Kinases