Natural genetic transformation of Vibrio parahaemolyticus via pVA1 plasmid acquisition as a potential mechanism causing AHPND

Dis Aquat Organ. 2019 Nov 28;137(1):33-40. doi: 10.3354/dao03420.

Abstract

Vibrio parahaemolyticus is the causative bacterium of acute hepatopancreatic necrosis disease (AHPND) in white shrimp Litopenaeus vannamei. This bacterium secretes protein toxins whose genes are encoded in an auto-transmissible plasmid called pVA1. The presence of this plasmid in V. parahaemolyticus is determinant for disease development. Its propagation is not only linked to bacterial colonisation capacity but also to horizontal gene transfer mechanisms. Nevertheless, the active uptake of plasmid, which is known as natural genetic transformation (NGT), has not yet been proposed as a possible acquisition mechanism of the pVA1 plasmid among Vibrio species. Previous studies suggest that some Vibrio species have the ability to undergo NGT in the presence of chitin. Therefore, the objective of this study was to evaluate the induction of NGT mediated by chitin in V. parahaemolyticus (ATCC-17802) through its ability to incorporate and express the pVA1 plasmid. The results showed that a reference strain that does not initially contain the plasmid can incorporate the plasmid under the appropriate transformation conditions, and cause mortality in white shrimp similar to that observed for pathogenic strains isolated from infectious outbreaks. Given the management and conditions of a shrimp farm with large amounts of chitinous exoskeletons, it is feasible that NGT could be a possible acquisition mechanism of plasmid pVA1 among Vibrio species, turning a non-causative strain of V. parahaemolyticus into a causative strain. With this study, we have expanded the knowledge of the pathogenesis process mediated by NGT and the understanding of the possible propagation mechanisms of emerging diseases in the aquaculture sector.

Keywords: AHPND; Acute hepatopancreatic necrosis disease; Natural genetic transformation; Vibrio parahaemolyticus; Virulence factors.

MeSH terms

  • Animals
  • Aquaculture
  • Penaeidae
  • Plasmids
  • Transformation, Genetic
  • Vibrio parahaemolyticus*