In normal metals, macroscopic properties are understood using the concept of quasiparticles. In the cuprate high-temperature superconductors, the metallic state above the highest transition temperature is anomalous and is known as the "strange metal." We studied this state using angle-resolved photoemission spectroscopy. With increasing doping across a temperature-independent critical value p c ~ 0.19, we observed that near the Brillouin zone boundary, the strange metal, characterized by an incoherent spectral function, abruptly reconstructs into a more conventional metal with quasiparticles. Above the temperature of superconducting fluctuations, we found that the pseudogap also discontinuously collapses at the very same value of p c These observations suggest that the incoherent strange metal is a distinct state and a prerequisite for the pseudogap; such findings are incompatible with existing pseudogap quantum critical point scenarios.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.