CD8+ T cells are important effectors of adaptive immunity against pathogens, tumors, and self antigens. Here, we asked how human cognate antigen-responsive CD8+ T cells and their receptors could be identified in unselected single-cell gene expression data. Single-cell RNA sequencing and qPCR of dye-labeled antigen-specific cells identified large gene sets that were congruently up- or downregulated in virus-responsive CD8+ T cells under different antigen presentation conditions. Combined expression of TNFRSF9, XCL1, XCL2, and CRTAM was the most distinct marker of virus-responsive cells on a single-cell level. Using transcriptomic data, we developed a machine learning-based classifier that provides sensitive and specific detection of virus-responsive CD8+ T cells from unselected populations. Gene response profiles of CD8+ T cells specific for the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein differed markedly from virus-specific cells. These findings provide single-cell gene expression parameters for comprehensive identification of rare antigen-responsive cells and T cell receptors.
Keywords: CD8+ T cells; CMV pp65; CTL (cytotoxic T lymphocyte); T cell receptor (TCR); antigen-responsive; gene-expression analysis; influenza matrix protein; single-cell.
Copyright © 2019 Fuchs, Sharma, Eugster, Kraus, Morgenstern, Dahl, Reinhardt, Petzold, Lindner, Löbel and Bonifacio.