Amplified sinus-P-wave reveals localization and extent of left atrial low-voltage substrate: implications for arrhythmia freedom following pulmonary vein isolation

Europace. 2020 Feb 1;22(2):240-249. doi: 10.1093/europace/euz297.

Abstract

Aims: Presence of arrhythmogenic left atrial (LA) low-voltage substrate (LVS) is associated with reduced arthythmia freedom rates following pulmonary vein isolation (PVI) in persistent atrial fibrillation (AF). We hypothesized that LA-LVS modifies amplified sinus-P-wave (APW) characteristics, enabling identification of patients at risk for arrhythmia recurrences following PVI.

Methods and results: Ninety-five patients with persistent AF underwent high-density (>1200 sites) voltage mapping in sinus rhythm. Left atrial low-voltage substrate (<0.5 and <1.0 mV) was quantified in a 10-segment LA model. Amplified sinus-P-wave-morphology and -duration were evaluated using digitized 12-lead electrocardiograms (40-80 mm/mV, 100-200 mm/s). 12-months arrhythmia freedom following circumferential PVI was assessed in 139 patients with persistent AF. Left atrial low-voltage substrate was most frequently (84%) found at the anteroseptal LA. Characteristic changes of APW were related to the localization and extent of LA-LVS. At an early stage, LA-LVS predominantly located to the LA-anteroseptum and was associated with APW-prolongation (≥150 ms). More extensive LA-LVS involved larger areas of LA-anteroseptum, leading to morphological changes of APW (biphasic positive-negative P-waves in inferior leads). Severe LA-LVS involved the LA-anteroseptum, roof and posterior LA, but spared the inferior LA, lateral LA, and LA appendage. In this advanced stage, widespread LVS at the posterior LA abolished the negative portion of P-wave in the inferior leads. The delayed activation of the lateral LA and LA appendage produced the late positive deflections in the anterolateral leads, resulting in the "late-terminal P"-pattern. Structured analysis of APW-duration and -morphology stratified patients to their individual extent of LA-LVS (Grade 1: mean LA-LVS 4.9 cm2 at <1.0 mV; Grade 2: 28.6 cm2; Grade 3: 42.3 cm2; P < 0.01). The diagnostic value of APW-duration for identification of LA-LVS was significantly superior to standard P-wave-amplification (c-statistic 0.945 vs. 0.647). Arrhythmia freedom following PVI differed significantly between APW-predicted grades of LA-LVS-severity [hazard ratio (HR) 2.38, 95% confidence interval (CI) 1.18-4.83; P = 0.015 for Grade 1 vs. Grade 2; HR 1.79, 95% CI 1.00-3.21, P = 0.049 for Grade 2 vs. Grade 3). Arrhythmia freedom 12 months after PVI was 77%, 53%, and 33% in Grades 1, 2 and 3, respectively.

Conclusion: Localization and extent of LA-LVS modifies APW-morphology and -duration. Analysis of APW allows accurate prediction of LA-LVS and enables rapid and non-invasive estimation of arrhythmia freedom following PVI.

Keywords: Atrial fibrillation; Electrocardiogram; Low voltage substrate; P-wave; Pulmonary vein isolation; Recurrence; Voltage mapping.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atrial Fibrillation* / diagnosis
  • Atrial Fibrillation* / surgery
  • Catheter Ablation*
  • Freedom
  • Humans
  • Pulmonary Veins* / surgery
  • Recurrence
  • Treatment Outcome