After many decades of vaccination, measles epidemiology varies greatly between and within countries. National immunization programs are therefore encouraged to conduct regular situation analyses and to leverage models to adapt interventions to local needs. Here, we review applications of models to develop locally tailored interventions to support control and elimination efforts. In general, statistical and semi-mechanistic transmission models can be used to synthesize information from vaccination coverage, measles incidence, demographic, and/or serological data, offering a means to estimate the spatial and age-specific distribution of measles susceptibility. These estimates complete the picture provided by vaccination coverage alone, by accounting for natural immunity. Dynamic transmission models can then be used to evaluate the relative impact of candidate interventions for measles control and elimination and the expected future epidemiology. In most countries, models predict substantial numbers of susceptible individuals outside the age range of routine vaccination, which affects outbreak risk and necessitates additional intervention to achieve elimination. More effective use of models to inform both vaccination program planning and evaluation requires the development of training to enhance broader understanding of models and where feasible, building capacity for modelling in-country, pipelines for rapid evaluation of model predictions using surveillance data, and clear protocols for incorporating model results into decision-making.
Keywords: Elimination; Epidemiology; Mathematical models; Measles; Measles vaccination; Rubella.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.