Mast cells (MCs) play a critical role in oral allergen-induced anaphylaxis. However, the contribution of basophils to the anaphylaxis remains unclear. The inhibitory immunoreceptor Allergin-1 is highly expressed on MCs and basophils and inhibits FcεRI-mediated signaling in MCs. Here, we show that Allergin-1-deficient (Milr1-/-) mice developed more severe hypothermia, a higher mortality rate and a greater incidence of diarrhea than did wild-type (WT) mice in an oral ovalbumin (OVA)-induced food allergy model. MC-deficient Mas-TRECK mice, which had been reconstituted with either WT or Milr1-/- bone marrow-derived cultured MCs, did not develop hypothermia in this food allergy model. On the other hand, depletion of basophils by injection of anti-CD200R3 antibody rescued Milr1-/- mice from lethal hypothermia but not from diarrhea. In vitro analyses demonstrated that Allergin-1 inhibits IgE-dependent activation of both human and mouse basophils. Thus, Allergin-1 on basophils selectively suppresses oral allergen-induced anaphylaxis.
Keywords: diarrhea; food allergy; mast cells.
© The Japanese Society for Immunology. 2019. All rights reserved. For permissions, please e-mail: [email protected].