Role of telomerase in the tumour microenvironment

Clin Exp Pharmacol Physiol. 2020 Mar;47(3):357-364. doi: 10.1111/1440-1681.13223. Epub 2019 Dec 22.

Abstract

Telomeres are specialized genomic structures that protect chromosomal ends to maintain genomic stability. Telomeric length is primarily regulated by the telomerase complex, essentially consisting of an RNA template (TERC), an enzymatic subunit (telomerase reverse transcriptase, TERT). In humans, telomerase activity is repressed during embryonic differentiation and is absent in most somatic cells. However, it is upregulated or reactivated in 80%-90% of the primary tumours in humans. The human TERT (hTERT) plays a pivotal role in cellular immortality and tumourigenesis. However, the molecular mechanisms of telomerase functioning in cancer have not been fully understood beyond the telomere maintenance. Several research groups, including ours, have demonstrated that hTERT possesses vital functions independent of its telomere maintenance, including angiogenesis, inflammation, cancer cell stemness, and epithelial-mesenchymal transformation (EMT). All these telomere-independent activities of hTERT may contribute to the regulation of the dynamics and homeostasis of the tumour microenvironment (TME), thereby promoting tumour growth and development. Cancer progression and metastasis largely depend upon the interactions between cancer cells and their microenvironment. In this review, the involvement of TERT in the tumour microenvironment and the underlying implications in cancer therapeutics have been summarized.

Keywords: TERT; angiogenesis; inflammation; telomerase; tumour microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Carcinogenesis / metabolism
  • Carcinogenesis / pathology
  • Cell Transformation, Neoplastic / metabolism
  • Cell Transformation, Neoplastic / pathology
  • Humans
  • Neoplasm Invasiveness / pathology
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Neoplastic Stem Cells / metabolism*
  • Neoplastic Stem Cells / pathology
  • Telomerase / metabolism*
  • Telomerase / physiology
  • Tumor Microenvironment / physiology*

Substances

  • TERT protein, human
  • Telomerase