Some of the earliest transcripts produced in fertilized human and mouse oocytes code for DUX, a double homeodomain protein that promotes embryonic genome activation (EGA). Deleting Dux by genome editing at the one- to two-cell stage in the mouse impairs EGA and blastocyst maturation. Here, we demonstrate that mice carrying homozygous Dux deletions display markedly reduced expression of DUX target genes and defects in both pre- and post-implantation development, with, notably, a disruption of the pace of the first few cell divisions and significant rates of late embryonic mortality. However, some Dux-/- embryos give rise to viable pups, indicating that DUX is important but not strictly essential for embryogenesis.
Keywords: DUX; Embryonic development; Zygotic genome activation.
© 2020. Published by The Company of Biologists Ltd.