Microbial organisms of the human gut microbiome do not exist in isolation but form complex and diverse interactions to maintain health and reduce risk of disease development. The organization of the gut microbiome is assumed to be a singular assortative network, where interactions between operational taxonomic units (OTUs) can readily be clustered into segregated and distinct communities. Here, we leverage recent methodological advances in network modeling to assess whether communities in the human microbiome exhibit a single network structure or whether co-existing mesoscale network architectures are present. We found evidence for core-periphery structures in the microbiome, supported by strong, assortative community interactions. This complex architecture, coupled with previously reported functional roles of OTUs, provides a nuanced understanding of how the microbiome simultaneously promotes high microbial diversity and maintains functional redundancy.
Keywords: Association Analysis; Bioinformatics; Microbiology; Microbiome.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.