Porcine deltacoronavirus (PDCoV), is an emerging enteropathogenic coronavirus in pigs, that poses a novel threat to swine husbandry worldwide. Crucial to halting PDCoV transmission and infection is the development of effective therapies and vaccines. The spike (S) protein of coronavirus is the major target of host neutralizing antibodies, however the immunodominant neutralizing region in the S protein of PDCoV has not been defined. Here, three truncations of the PDCoV S protein were generated, the N-terminal domain of the S1 subunit (NTD, amino acids (aa) 50-286), the C-terminal domain of the S1 subunit (CTD, aa 278-616), and S2 subunit (aa 601-1087). The proteins were expressed using an E. coli expression system. Polyclonal antisera against the three recombinant proteins were produced in rabbits and mice. All three antisera were able to inhibit PDCoV infection in vitro, as determined by virus neutralization assay, fluorescent focus neutralization assay, and plaque-reduction neutralization. The CTD-specific antisera had the most potent PDCoV-neutralizing effect, indicating that the CTD region may contain the major neutralizing epitope(s) in the PDCoV S protein. Based on these findings, CTD may be a promising target for development of an effective vaccine against PDCoV infection in pigs.
Keywords: Epitope region; Neutralizing antibody; Porcine deltacoronavirus (PDCoV); Spike glycoprotein.
Copyright © 2019 Elsevier B.V. All rights reserved.