Smut infection alters the transcription of dirigent proteins (DIR) by sugarcane plants. Here, we show that these alterations are associated to an elevated production of cytotoxic lignans. Smut-resistant sugarcane varieties display a fivefold increase in pinoresinol and also produce elevated amounts of secoisolariciresinol. Conversely, smut-sensitive varieties do not produce pinoresinol or secoisolariciresinol upon infection, synthesizing instead small amounts of matairesinol. Our data indicate that commercial pinoresinol and secoisolariciresinol seem to prevent smut teliospore germination and sporidia release from sprouted teliospores. Consistently, we observed abundant morphological alterations of sporidia incubated in the presence of these lignans. However, commercial lignans do not block the development of the pathogen in a definitive way. Additional experiments demonstrate that only the extracts from healthy or smut-exposed resistant plants inhibit sporidia growth in vitro, indicating that a specific mixture of lignans from resistant plants is necessary to constitute an effective defense mechanism.
Keywords: Lignans; Sporidia; Sporisorium scitamineum; Sugar cane; Sugar cane glycoproteins.
Copyright © 2019 Elsevier GmbH. All rights reserved.