Seedlings in moist tropical forests must cope with deep shade and seasonal drought. However, the interspecific relationship between seedling performance in shade and drought remains unsettled. We quantified spatiotemporal variation in shade and drought in the seasonal moist tropical forest on Barro Colorado Island (BCI), Panama, and estimated responses of naturally regenerating seedlings as the slope of the relationship between performance and shade or drought intensity. Our performance metrics were relative height growth and first-year survival. We investigated the relationship between shade and drought responses for up to 63 species. There was an interspecific trade-off in species responses to shade versus species responses to dry season intensity; species that performed worse in the shade did not suffer during severe dry seasons and vice versa. This trade-off emerged in part from the absence of species that performed particularly well or poorly in both drought and shade. If drought stress in tropical forests increases with climate change and as solar radiation is higher during droughts, the trade-off may reinforce a shift towards species that resist drought but perform poorly in the shade by releasing them from deep shade.