Acute lung injury (ALI) is a life-threatening disease that is characterised by the rapid onset of inflammatory responses. Lipopolysaccharide (LPS) is an endotoxin that plays an important role in triggering ALI via pneumonia and sepsis. However, no effective therapeutic strategies are currently available to treat ALI. Nerolidol is an aliphatic sesquiterpene alcohol that is found in the essential oils of many flowers as well as floral plants. It has been shown to exhibit anti-inflammatory, antioxidant, and anticancer properties. Herein, we show that nerolidol pretreatment counteracted the histopathological hallmarks in LPS-induced ALI mice. Indeed, nerolidol pretreatment inhibited LPS-induced alveolar-capillary barrier disruption, lung edema, and lipid peroxidation. Moreover, nerolidol pretreatment prevented the LPS from decreasing the enzymatic activities of superoxide dismutase, catalase, and glutathione peroxidase. Importantly, nerolidol treatment enhanced phosphorylation of AMP-activated protein kinase (AMPK) and expression of nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1). Taken together, our study reveals the novel protective effects of nerolidol in LPS-induced ALI via the induction of antioxidant responses and activation of the AMPK/Nrf-2/HO-1 signalling pathway.
Copyright © 2019 Yung-Lun Ni et al.