Background: The Cadherin-11 and PI3K/Akt pathway are increasingly recognized as the potential therapeutic target of osteoarthritis (OA) synovitis. The study aimed to investigate the role of PI3K/Akt signaling pathway in the expression of Cadherin-11 and migration and invasive capacity of fibroblast-like synoviocytes (FLS) of OA patients under stimulation of TNF-α and to explore the effect of the PI3K/Akt inhibitor and Cadherin-11 antibody in the therapy of the collagenase-induced osteoarthritis (CIOA) mice.
Methods: FLS were primarily cultured from synovium of osteoarthritic patients during total knee arthroplasty. Under the simulation of TNF-α, with or without PI3K/Akt inhibitor LY294002, Cadherin-11 expression was detected by real-time PCR and Western blot, as well as the migration and invasive capacity changes of OA FLS. Cadherin-11 antibody was injected intraarticularly or LY294002 was injected intraperitoneally in CIOA mice to evaluate the changes of synovitis score, cartilage damage, and Cadherin-11 expression.
Results: TNF-α stimulation increased Cadherin-11 expression at mRNA and protein level in OA FLS and also increased the phosphorylation-dependent activation of Akt. PI3K inhibitor LY294002 attenuated TNF-α-induced overexpression of Cadherin-11 and decreased the invasive capacity of OA FLS. Intraperitoneal injection of PI3K inhibitor LY294002 could decrease the Cadherin-11 protein expression in synovium of CIOA mice, although it has no significant inhibitory effect on synovitis and cartilage damage. Intraarticular injection of Cadherin-11 antibody attenuated the synovitis and cartilage damage in the CIOA joints and decreased Cadherin-11 expression in the synovial lining.
Conclusions: PI3K/Akt pathway was associated with TNF-α-induced activation of OA FLS, which may involve in the pathogenesis of osteoarthritis. Anti-Cadherin-11 therapy in CIOA mice could attenuate the pathological changes of OA joints.
Keywords: Cadherin-11; Fibroblast-like synoviocytes; Osteoarthritis; PI3K/Akt inhibitor; TNF-α.