Rational Design of Novel Efficient Palladium Electrode Embellished 3D Hierarchical Graphene/Polyimide Foam for Hydrogen Peroxide Electroreduction

ACS Appl Mater Interfaces. 2020 Jan 8;12(1):934-944. doi: 10.1021/acsami.9b19656. Epub 2019 Dec 19.

Abstract

The electrocatalytic applications of traditional polyimide film and carbon nanomaterials are hindered due to a shortage of three-dimensional hierarchical conductivity and porous structure. Herein, a novel polyimide-based electrode based on a highly efficient palladium nanocatalyst embellished three-dimensional reduced graphene oxide/polyimide foam (Pd/3D RGO@PI foam, signed PRP) toward H2O2 electroreduction was designed and prepared through thermal foaming procedure, followed by facile dip-drying method and electrodeposition. As expected, such a binder-free, 3D hierarchical structure PRP electrode presented high catalytic property, good stability, as well as low activation energy toward H2O2 electroreduction during the electrochemical measurement period. The PRP electrode showed a reduction current density of 810 mA·cm-2 at -0.2 V (vs Ag/AgCl) in 2.0 mol·L-1 H2SO4 and 2.0 mol·L-1 H2O2. Moreover, the PRP electrode also illustrated good reproducibility and repeatability. Reproducibility presented almost 95.8% of the initial current density after 1000 cycles test. Also, the activation energy of H2O2 electroreduction on 3D PRP electrode was 21.624 kJ·mol-1. Benefiting from the 3D hierarchical structure and efficient catalyst, the PRP electrode exhibited excellent electrocatalytic performance and was considered to be a potential candidate material for fuel cells.

Keywords: 3D hierarchical structure; Pd nanoparticles catalyst; graphene; hydrogen peroxide electroreduction; polyimide foam.