FeSe quantum dots for in vivo multiphoton biomedical imaging

Sci Adv. 2019 Dec 6;5(12):eaay0044. doi: 10.1126/sciadv.aay0044. eCollection 2019 Dec.

Abstract

An immense demand in biomedical imaging is to develop efficient photoluminescent probes with high biocompatibility and quantum yield, as well as multiphoton absorption performance to improve penetration depth and spatial resolution. Here, iron selenide (FeSe) quantum dots (QDs) are reported to meet these criteria. The synthesized QDs exhibit two- and three-photon excitation property at 800- and 1080-nm wavelengths and high quantum yield (ca. 40%), which are suitable for second-window imaging. To verify their biosuitability, poly(ethylene glycol)-conjugated QDs were linked with human epidermal growth factor receptor 2 (HER2) antibodies for in vitro/in vivo two-photon imaging in HER2-overexpressed MCF7 cells and a xenograft breast tumor model in mice. Imaging was successfully carried out at a depth of up to 500 μm from the skin using a nonlinear femtosecond laser at an excitation wavelength of 800 nm. These findings may open up a way to apply biocompatible FeSe QDs to multiphoton cancer imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / diagnostic imaging*
  • Breast Neoplasms / pathology
  • Carboxylic Acids / chemistry
  • Carboxylic Acids / pharmacology*
  • Female
  • Fluorescent Dyes / chemistry
  • Fluorescent Dyes / pharmacology
  • Heterografts
  • Humans
  • Iron / chemistry
  • Iron / pharmacology*
  • MCF-7 Cells
  • Mice
  • Molecular Imaging
  • Organoselenium Compounds / chemistry
  • Organoselenium Compounds / pharmacology*
  • Quantum Dots / chemistry
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / isolation & purification*

Substances

  • Carboxylic Acids
  • Fluorescent Dyes
  • Organoselenium Compounds
  • seleninic acid
  • Iron
  • ERBB2 protein, human
  • Receptor, ErbB-2