Novel tools for early diagnosis and monitoring of schistosomiasis are urgently needed. This study aimed to validate parasite-derived miRNAs as potential novel biomarkers for the detection of human Schistosoma japonicum infection. A total of 21 miRNAs were initially validated by real-time-polymerase chain reaction (RT-PCR) using serum samples of S. japonicum-infected BALB/c mice. Of these, 6 miRNAs were further validated with a human cohort of individuals from a schistosomiasis-endemic area of the Philippines. RT-PCR analysis showed that two parasite-derived miRNAs (sja-miR-2b-5p and sja-miR-2c-5p) could detect infected individuals with low infection intensity with moderate sensitivity/specificity values of 66%/68% and 55%/80%, respectively. Analysis of the combined data for the two parasite miRNAs revealed a specificity of 77.4% and a sensitivity of 60.0% with an area under the curve (AUC) value of 0.6906 (P = 0.0069); however, a duplex RT-PCR targeting both sja-miR-2b-5p and sja-miR-2c-5p did not result in an increased diagnostic performance compared with the singleplex assays. Furthermore, the serum level of sja-miR-2c-5p correlated significantly with faecal egg counts, whereas the other five miRNAs did not. Targeting S. japonicum-derived miRNAs in serum resulted in a moderate diagnostic performance when applied to a low schistosome infection intensity setting.
Keywords: Biomarker; Philippines; Schistosoma japonicum; circulating miRNAs; diagnosis; schistosomiasis.