Inflammatory mediators play a key role in the pathogenesis of acute respiratory distress syndrome (ARDS). In this study, we aimed to explore the involvement of the Kcnq1 opposite strand/antisense transcript 1 (Kcnq1ot1)/miR-381-3p/E26 transformation-specific proto-oncogene 2 (ETS2) axis in inflammation of lipopolysaccharide (LPS)-induced ARDS. Microarray analysis revealed ETS2 as an upregulated gene in ARDS. Then, a LPS-induced ARDS mouse model was constructed, with a series of gain- or loss-of-function experiments conducted to evaluate the lung function and neutrophil extracellular trap (NET) formation in lung tissue and determine the neutrophil number, myeloperoxidase (MPO) activity, and inflammatory factor levels in bronchoalveolar lavage fluid (BALF). As the results revealed, downregulated expression of ETS2 resulted in improved lung function, decreased NETs, MPO activity, and levels of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), as well as increased IL-10 level. Then, the assays of dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP), and RNA pull-down were performed to validate that Kcnq1ot1 promoted ETS2 expression by competitively binding to miR-381-3p. Meanwhile, it was also found that Kcnq1ot1 silencing reversed the promotive effect of EST2 on ARDS. Our results provide evidence that Kcnq1ot1 silencing may reduce the inflammatory response in LPS-induced ARDS via inhibition of miR-381-30-dependent ETS2, thereby presenting new molecular understanding for the development of ARDS.
Keywords: ETS2; Kcnq1ot1; acute respiratory distress syndrome; inflammatory response; lipopolysaccharide; lung injury; miR-381-3p; neutrophil.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.