Bronchopulmonary dysplasia is the most common chronic respiratory disease in premature infants with growing evidence that genetic factors contribute largely to moderate and severe cases. We assessed by exome sequencing if rare genetic variants could account for extremely severe phenotypes. We selected 6 infants born very preterm with severe bronchopulmonary dysplasia and 8 very preterm born controls for exome sequencing. We filtered whole exome sequencing results to include only rare variants and selected variants and/or genes with variants that were present in at least 2 cases and absent in controls. We selected variants, all heterozygous, in 9 candidate genes, 7 with a putative role in lung development and 2 that displayed 3 variations in 3 different cases, independently of their potential role in lung development. Sequencing of 5 other severe cases for these variants did not replicate our results.Conclusion: In selected preterm born infants with severe bronchopulmonary dysplasia and controls, we failed to find any rare variant shared by several infants with an extremely severe phenotype. Our results are not consistent with the role of rare causative variants in bronchopulmonary dysplasia's development and argue for the highly polygenic nature of susceptibility of this disorder.What is Known:• Bronchopulmonary dysplasia is a multifactorial disease resulting from complex environmental and genetic interactions occurring in an immature lung.• It is not known whether rare genetic variants in coding regions could account for extreme phenotypes of the disease.What is New:• In a group of infants with an extreme phenotype of bronchopulmonary dysplasia and in comparison to controls, no common genetic variants were found, nor did variants that were select in other exome studies in this setting.• These results argue for the highly polygenic nature of susceptibility of bronchopulmonary dysplasia.
Keywords: Bronchopulmonary dysplasia; Extreme phenotypes; Genetics.