Palladium-catalyzed oxidative dehydrogenative carbonylation reactions using carbon monoxide and mechanistic overviews

Chem Soc Rev. 2020 Jan 27;49(2):341-353. doi: 10.1039/c9cs00397e.

Abstract

Carbon monoxide, which is an abundant and inexpensive carbonyl source, has been widely applied to synthesize carbonyl-containing compounds, for example ketones, esters, and amides. These types of compounds are ubiquitous in natural products, pharmaceuticals, as well as in functional materials. This review focuses on the palladium-catalyzed dehydrogenative C-H/X-H (X = C, N, O) carbonylation transformations under oxidative conditions. The related C-H bonds here include C(sp)-H, C(sp2)-H, and C(sp3)-H bonds. From a step- and atom-economy perspective, transition metal-catalyzed oxidative dehydrogenative C-H/X-H carbonylation reactions with CO constitute one of the most efficient strategies for the construction of versatile carbonyl groups, without the requirement of pre-functionalized substrates.