Background: Interleukin (IL)-22 is a cytokine involved in tissue protection and repair following lung pathologies. Interferon (IFN)-λ cytokines displayed similar properties during viral infection and a synergy of action between these two players has been documented in the intestine. We hypothesize that during Pseudomonas aeruginosa challenge, IL-22 up-regulates IFN-λ and that IFN-λ exhibits protective functions during Pseudomonas aeruginosa acute pneumonia model in mice.
Methods: Using an in vitro human alveolar epithelial cell line A549, we assessed the ability of IL-22 to enhance IFN-λ expression during infection. IFN-λ protective function was evaluated in an acute mouse pneumonia model.
Results: We first demonstrated in murine lungs that only type-II alveolar cells express IL-22 receptor and that IL-22 treatment of A549 cell line up-regulates IFN-λ expression. In a murine acute pneumonia model, IL-22 administration maintained significant IFN-λ levels in the broncho-alveolar fluids whereas IL-22 neutralization abolished IFN-λ up-regulation. In vivo administration of IFN-λ during Pseudomonas aeruginosa pneumonia improves mice outcome by dampening neutrophil recruitment and decreasing epithelium damages.
Discussion: We show here that IL-22 regulates IFN-λ levels during Pseudomonas aeruginosa pneumonia.
Keywords: Alveolar epithelial cells; Host response; Interferon-λ; Interleukin-22; Neutrophils; Pseudomonas aeruginosa.
Copyright © 2019. Published by Elsevier Ltd.