The C9orf72 repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). Non-canonical translation of the expanded repeat results in abundant poly-GA inclusion pathology throughout the CNS. (GA)149 -CFP expression in mice triggers motor deficits and neuroinflammation. Since poly-GA is transmitted between cells, we investigated the therapeutic potential of anti-GA antibodies by vaccinating (GA)149 -CFP mice. To overcome poor immunogenicity, we compared the antibody response of multivalent ovalbumin-(GA)10 conjugates and pre-aggregated carrier-free (GA)15 . Only ovalbumin-(GA)10 immunization induced a strong anti-GA response. The resulting antisera detected poly-GA aggregates in cell culture and patient tissue. Ovalbumin-(GA)10 immunization largely rescued the motor function in (GA)149 -CFP transgenic mice and reduced poly-GA inclusions. Transcriptome analysis showed less neuroinflammation in ovalbumin-(GA)10 -immunized poly-GA mice, which was corroborated by semiquantitative and morphological analysis of microglia/macrophages. Moreover, cytoplasmic TDP-43 mislocalization and levels of the neurofilament light chain in the CSF were reduced, suggesting neuroaxonal damage is reduced. Our data suggest that immunotherapy may be a viable primary prevention strategy for ALS/FTD in C9orf72 mutation carriers.
Keywords: C9orf72; amyotrophic lateral sclerosis; frontotemporal dementia; immunotherapy; neurodegeneration.
© 2019 The Authors. Published under the terms of the CC BY 4.0 license.