Although silver nanoparticles are considered as promising antibacterial agents because of their antibacterial activity, the acute cytotoxicity of Ag+ released from Ag nanoparticles restricts their potential practical applications. Herein, porous Ag@Au nanoplates, which could balance the Ag+ release and the toxicity of Ag naoparticles, were fabricated by stepwise seed-mediated growth and oxidation. Laser irradiation further boosted their antimicrobial activity, and significantly accelerated the curing rate of wound. Comparing with Ag nanoplates, the irradiated porous Ag@Au nanoplates showed the similar antibiotic ability against S. aureus strains and lower cytotoxicity in vitro. When the porous Ag@Au nanoplates were applied to treat S. aureus-infected wound, they had the best curing effect. Thus, these porous Ag@Au nanoplates could act as promising antibacterial agents for wound healing applications.
Keywords: Antibacterial; Gold; Nanoplates; Silver; Wounding healing.
Copyright © 2019 Elsevier B.V. All rights reserved.