We report the first example of 2D covalent organic framework nanosheets (Redox-COF1) for the selective reduction and in situ loading of valence-variable, redox-sensitive and long-lived radionuclides (abbreviated as VRL nuclides). Compared with sorbents based on chemical adsorption and physical adsorption, the redox adsorption mechanism of Redox-COF1 can effectively reduce the impact of functional group protonation under the usual high-acidity conditions in chemisorption, and raise the adsorption efficiency from the monotonous capture by pores in physisorption. The adsorption selectivity for UO2 2+ reaches up to unprecedented ca. 97 % at pH 3, more than for any analogous adsorbing material.
Keywords: covalent organic frameworks; nuclear energy; redox adsorption; sorption; uranium.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.