Current medications for the treatment of hypertrophic scars suffer from bottlenecks of limited therapeutic efficacy and a slow recovery rate. Silk fibroin (SF) has gained attention for its ability to promote wound healing in burns and cutaneous wounds, but its therapeutic effects against hypertrophic scar have not been thoroughly investigated. We prepared SF-based hydrogels (SFHs) with various SF concentrations (1.5 %, 3 %, and 6 %) and characterized their physicochemical properties. Cell experiments showed that these SFHs had favorable biocompatibility in vitro. Further animal experiments in rabbits revealed that the SFH (3 %)-treated group achieved scars on their ears that were thinner and significantly lighter in color compared with the negative control group. Moreover, treatment with SFHs reduced the density and led to the orderly arrangement of collagen fibers. It was found that the therapeutic effects of SFHs were attributed to the reduced expression levels of α-smooth muscle actin. These results are the first to demonstrate that SFH can be exploited as an effective therapeutic agent for the treatment of hypertrophic scars.
Keywords: Collagen fibers; Hypertrophic scar; Silk fibroin-based hydrogel; α-Smooth muscle actin.
Copyright © 2019 Elsevier B.V. All rights reserved.