The TaqMan-based quantitative Polymerase Chain Reaction (qPCR) method and the Plate Count (PC) method are both used in combination with primary and secondary mathematical modeling, to describe the growth curves of Leuconostoc mesenteroides and Weissella viridescens in vacuum-packaged meat products during storage under different isothermal conditions. Vacuum-Packaged Morcilla (VPM), a typical cooked blood sausage, is used as a representative meat product, with the aim of improving shelf-life prediction methods for those sorts of meat products. The standard curves constructed by qPCR showed good linearity between the cycle threshold (CT) and log10 CFU/g, demonstrating the high precision and the reproducible results of the qPCR method. The curves were used for the quantification of L. mesenteroides and W. viridescens in artificially inoculated VPM samples under isothermal storage (5, 8, 13 and 18 °C). Primally, both the qPCR and the PC methods were compared, and a linear regression analysis demonstrated a statistically significant linear correlation between the methods. Secondly, the Baranyi and Roberts model was fitted to the growth curve data to estimate the kinetic parameters of L. mesenteroides and W. viridescens under isothermal conditions, and secondary models were used to establish the dependence of the maximum specific growth rate on the temperature. The results proved that primary and secondary models were adequate for describing the growth curves of both methods in relation to both bacteria. In conclusion, the results of all the experiments proved that the qPCR method in combination with the PC method can be used to construct microbial growth kinetics and that primary and secondary mathematical modeling can be successfully applied to describe the growth of L. mesenteroides and W. viridescens in vacuum-packaged morcilla and, by extension, other cooked meat products with similar characteristics.
Keywords: Leuconostoc mesenteroides; Mathematical modeling; Shelf-life; Weissella viridescens; qPCR.
Copyright © 2019 Elsevier B.V. All rights reserved.