Iron (Fe) deficiency limits the yield of fruit trees. When subjected to Fe deficiency, H+ secretion increases in the rhizosphere of dicotyledonous plants and pH decreases. This leads to the acidification of the soil and promotes Fe3+ to Fe2+ conversion, which plants can better uptake. This study investigated the relationship between two inhibitory transcription factors (ethylene response factors MbERF4 and MbERF72) and the H+-ATPase gene MbHA2. Two species of apple woody plants were studied: the Fe-inefficient Malus baccata and the Fe-efficient Malus xiaojinensis. Yeast one-hybrid and electrophoretic mobility shift assays showed that both MbERF4 and MbERF72 bind to the GCC cassette (AGCCGCC) of the MbHA2 promoter. Moreover, yeast two-hybrid and bimolecular fluorescence complementation assays showed that MbERF4 interacts with MbERF72. Furthermore, β-glucuronidase and luciferase reporter assays showed that the MbERF4- and MbERF72-induced repression of MbHA2 expression is synergistic. Virus-induced gene silencing of MbERF4 or MbERF72 increased MbHA2 expression, and thus lowered the rhizosphere pH in M. baccata. Consequently, the high expressions of MbERF4 and MbERF72 induced by Fe deficiency contributed to the Fe sensitivity of M. baccata. Moreover, the low expressions of MxERF4 and MxERF72 contributed to the Fe-deficiency tolerance of M. xiaojinensis via different binding conditions to the HA2 promoter. In summary, this study identified the relationship of two inhibitory transcription factors with the H+-ATPase gene and proposed a model in which ERF4 and ERF72 affect the rhizosphere pH in response to Fe deficiency.
Keywords: MbHA2; Apple rootstock; Ethylene response factor; Fe deficiency; Transcription factor.
© The Author(s) 2019. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: [email protected].