Microwave-assisted co-pyrolysis of low hydrogen-to-carbon and high hydrogen-to-carbon effective ratio materials with the aid of HZSM-5 and MCM-41 is a promising technique to improve the bio-oil quality. The low content of hydrocarbons and short life cycle of catalyst limit the application of pyrolysis technology in biomass energy conversion. The effects of catalytic temperature, and HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock ratios on the yield and composition of bio-oil were studied in this work. The quality of bio-oil during biomass pyrolysis can be improved by adjusting the operating conditions. The optimal catalytic temperature, and ratios of HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock were 400 °C, 1:1, 2:1, and 1:2, respectively. The addition of MCM-41 was beneficial in prolonging the life of HZSM-5 since the macromolecular compounds cracked when MCM-41 was added which restrain the generation of coke. The co-pyrolysis of soapstock with straw advanced the deoxygenation of oxygen-containing compounds especially phenol from straw during pyrolysis.
Keywords: HZSM-5 catalyst; MCM-41 catalyst; Microwave-assisted co-pyrolysis; Soapstock; Straw.
Copyright © 2019 Elsevier Ltd. All rights reserved.