Despite the importance of iteroparity (i.e. repeated spawning) for the viability of Atlantic salmon populations, little is known about the factors influencing the migratory behaviour and survival prospect of post-spawned individuals (kelts). To test the hypothesis that post-spawning nutritional condition underlies differences in spatiotemporal aspects of the habitat use and survival of migrating Atlantic salmon kelts, we physiologically sampled and acoustically tagged 25 individuals from the Middle River, Nova Scotia in autumn 2015. Kelts were subsequently tracked within their natal river during the winter months, and as far as 650 km away along known migration pathways towards the Labrador Sea and Greenland. Some kelts were detected nearly 2 years later, upon their return to the natal river for repeat spawning. Overall, kelts in poor or depleted post-spawning nutritional state (i.e. low body condition index or plasma triglyceride level): (i) initiated down-river migration earlier than higher condition kelts; (ii) experienced higher overwinter mortality in the natal river; (iii) tended to spend greater time in the estuary before moving to sea and (iv) did not progress as far in the marine environment, with a reduced probability of future, repeat spawning. Our findings suggest that initial differences in post-spawning condition are carried through subsequent migratory stages, which can ultimately affect repeat-spawning potential. These results point to the importance of lipid storage and mobilisation in Atlantic salmon kelts for mediating post-spawning migratory behaviour and survival.
Keywords: Acoustic telemetry; carryover effects; life history trade-offs; plasma triglycerides; previously spawned.
© The Author(s) 2019. Published by Oxford University Press and the Society for Experimental Biology. All rights reserved. For permissions, please e-mail: [email protected].