Organophosphorus (OP) compounds, which include insecticides and chemical warfare nerve agents (CWNAs) such as sarin (GB) and VX, continue to be a global threat to both civilian and military populations. It is widely accepted that cholinesterase inhibition is the primary mechanism for acute OP toxicity. Disruption of cholinergic function through the inhibition of acetylcholinesterase (AChE) leads to the accumulation of the neurotransmitter acetylcholine. Excess acetylcholine at the synapse results in an overstimulation of cholinergic neurons which manifests in the common signs and symptoms of OP intoxication (miosis, increased secretions, seizures, convulsions, and respiratory failure). The primary therapeutic strategy employed in the United States to treat OP intoxication includes reactivation of inhibited AChE with the oxime pralidoxime (2-PAM) along with the muscarinic acetylcholine receptor antagonist atropine and the benzodiazepine, diazepam. CWNAs are also known to inhibit butyrylcholinesterase (BChE) without any apparent toxic effects. Therefore, BChE may be viewed as a "bioscavenger" that stoichiometrically binds CWNAs and removes them from circulation. The degree of inhibition of AChE and BChE and the effectiveness of 2-PAM are known to vary among species. Animal models are imperative for evaluating the efficacy of CWNA medical countermeasures, and a thorough characterization of available animal models is important for translating results to humans. Thus, the objective of this study was to compare the circulating levels of each of the cholinesterases as well as multiple kinetic properties (inhibition, reactivation, and aging rates) of both AChE and BChE derived from humans to AChE and BChE derived from commonly used large animal models.
Keywords: biological modeling; chemical and biological weapons; organophosphates; risk assessment.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: [email protected].