Protein phosphorylation by kinases is of critical importance for the regulation of many cellular functions. When kinases are deregulated numerous biological processes are affected, which may cause a variety of diseases. Therefore, kinase inhibition plays an important role for therapeutic intervention. A number of kinase inhibitors have been approved as drugs, initially in oncology where promiscuous (multi-kinase) inhibitors were most efficacious. Exploring kinase inhibitor selectivity and promiscuity for therapy is among the most challenging aspects of kinase drug discovery. Herein, we thoroughly analyze a kinase profiling experiment in which 637 designated inhibitors of p38α MAP kinase (p38α) were tested against a panel of 60 kinases distributed across the human kinome. In this experiment, only 19% of the inhibitors were found to be promiscuous when the median p38α inhibition level was applied as an activity threshold. Promiscuous inhibitors had a median value of two targets per compound, and many of these inhibitors were only active against the p38α and closely related JNK3 enzymes. Promiscuity cliffs were identified and analyzed in a network representation revealing structural modifications that were implicated in triggering compound promiscuity. Taken together, the findings revealed a high degree of selectivity of designated p38α directed inhibitors although they target the ATP binding site that is largely conserved across the human kinome.
Keywords: Compound promiscuity; Compound screening; Computational analysis; Kinase profiling; Promiscuity cliffs; Selectivity; p38α kinase inhibitors.
Copyright © 2019 Elsevier Masson SAS. All rights reserved.