Series of Co3+-rich spinel Co3O4 catalysts were synthesized and evaluated by toluene catalytic oxidation. An outstanding activity was achieved over Co3O4-N utilizing Co(NO3)2·6H2O as precursor (T50 = 211 °C, T90 = 217 °C at conditions: 1000 ppm(v), WHSV = 60 000 mL g-1 h-1). Results of comparative characterizations demonstrated that such excellent performance was mainly attributed to large surface area, high reducibility at low temperature, high abundance of Co3+ ions and structure defects, as well as highly active surface oxygen. The results of in situ DRIFTS revealed that in the air or N2 atmosphere, the by-products were almost the same. The reaction pathway of toluene oxidation can be described as follow: transformation of toluene from benzyl alcohol, benzaldehyde, benzoate, benzene, phenol, benzoquinone, maleic acid and to final products, which were fully confirmed by PTR-TOF-MS. Besides, ring opened by-products, such as acetone, acetic acid, acetaldehyde, etc. were also detected. In this work, the combination of in situ DRIFTS and PTR-TOF-MS provided a promising approach for further understanding of the mechanism of VOCs elimination.
Keywords: Activity; By-products; In situ DRIFTS; Outstanding; PTR-TOF-MS; Toluene oxidation.
Copyright © 2019 Elsevier B.V. All rights reserved.