HuH-7 cells, derived from human hepatocarcinoma, are known to contain the CD133-positive cancer stem cell populations. HuH-7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol-3-phosphate (G3P)-driven ATP synthesis (G3P-ATPase) activity. We found that the CD133-positive HuH-7 cells expressed high levels of GPD2 (glycerol-3-phosphate dehydrogenase or mGPDH) and showed high G3P-ATPase activity. Next, to elucidate the relationship between CD133 and GPD2, we inhibited downstream factors of CD133 and found that a p38 inhibitor decreased the expression of GPD2 and decreased the G3P-ATPase activity. Furthermore, GPD2-knockdown (GPD2-KD) cells exhibited strong reduction of the G3P-ATPase activity and reduction of lactic acid secretion. Finally, we validated the effect of GPD2-KD on tumorigenicity. GPD2-KD cells were found to show decreased anchorage-independent cell proliferation, suggesting the linkage of G3P-ATPase activity to the tumorigenicity of the CD133-positive HuH-7 cells. Inhibition of G3P-ATPase disrupts the homeostasis of energy metabolism and blocks cancer development and progression. Our results suggest inhibitors, targeting GPD2 may be potential new anticancer agents.
Keywords: CD133; GPD2; alternative respiratory chain; cancer stem cell; energy metabolism; glycerol-3-phosphate.
© 2019 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.