Insights into the Microstructure of Hydrothermal Synthesized Nanoscale K2O-Al2O3-SiO2-H2O Particles

Nanomaterials (Basel). 2019 Dec 26;10(1):63. doi: 10.3390/nano10010063.

Abstract

K-A-S-H (K2O-Al2O3-SiO2-H2O) gel is a key phase that forms in most alkali-activated binders (eco-friendly binders which utilize a substantial amount of industrial by-product). An in-depth understanding of the microstructure and performance of this nano-sized key phase facilitates better application to alkali-activated binders. However, such studies remain little and undetailed. Therefore, our research aims to provide insights into the microstructure of K-A-S-H particles synthesized with accurate stoichiometric control by the hydrothermal method through thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and BET surface area. The results show that for materials prepared at the curing temperature lower than 80 °C, the K-A-S-H products were completely amorphous. With increased curing temperature and time, the K-A-S-H products were transformed from the amorphous phase to the crystalline zeolite phase structure, with a reduction in the specific surface area. The TG results indicate that the crystalline phase contains more non-evaporated water or zeolite water for structural rearrangement. The degree of tetrahedral polymerization slightly decreased with an increase of the K2O/SiO2 ratio as the amount of non-bridged oxygen atoms increased, whereas it gradually increased with an increase of curing temperature and time, as suggested by the FTIR and NMR results. Various K2O/SiO2 ratios resulted in the formation of zeolite K-H and K-G zeolite, both of which exhibited highly polymerized three-dimensional network structures. However, there was no significant effect of the SiO2/Al2O3 ratio on the structure of K-A-S-H products. Overall, these results provide insight into understanding the chemical stability of K-A-S-H.

Keywords: K-A-S-H; nuclear magnetic resonance; phase composition; polymerization degree; zeolite.