The establishment of advanced electrocatalysts with remarkable performance and cost effectiveness for the oxygen evolution reaction (OER) is an emerging need for the production of clean hydrogen fuel. In this work, three-dimensional (3D) amorphous NiFeIrx/Ni core-shell nanowire@nanosheets (NW@NSs) are successfully synthesized through a facile one-step reduction process with atomically isolated Ir atoms anchored on an NiFe-based core. By taking advantage of their unique structure and composition, the resultant NiFeIrx/Ni NW@NSs have a high electrocatalytic activity for OER which can deliver current densities of 10 and 100 mA cm-2 at overpotentials as low as 200 and 250 mV in 1 M KOH, respectively. It is worth noting that NiFeIrx/Ni NW@NSs exhibit outstanding long-term stability over 12 h at a current density of 10 mA cm-2. Theoretical calculations also reveal that the intrinsic activity of the resultant NiFeIrx/Ni NW@NSs is significantly enhanced upon the addition of Ir single atoms, highlighting the critical role of the synergistic effect between Ir single atoms and the support. Due to their easy synthesis and superior electrochemical performance, the newly designed nanostructures may find promising potential applications in water splitting and other related fields.
Keywords: amorphous nanostructures; core−shell structures; oxygen evolution reaction; porous nanomaterials; single-atom catalysis.