Candida parapsilosis produces biofilm, which colonizes catheters and other invasive medical devices that are manipulated by health care workers. In previous studies, C. parapsilosis in vitro biofilms have exhibited high resistance rates against conventional antifungals, but susceptibility to both echinocandins and lipid formulations of amphotericin B (lipid complex and liposomal). However, a recent study showed good activity of amphotericin B deoxycholate on the biomass of C. parapsilosis biofilms. Although moderate activity of echinocandins has been demonstrated against low metabolic activity biofilms of C. parapsilosis, few studies have analyzed the action of these drugs on high metabolic activity biofilms. Moreover, high biofilm-forming isolates have been associated with central venous catheter-related fungemia outbreaks and higher mortality rates. Therefore, it is relevant to verify the activity of the main antifungal drugs against high metabolic activity biofilms of C. parapsilosis. Our study aimed to evaluate the in vitro activity of amphotericin B deoxycholate, anidulafungin, caspofungin, and micafungin against high biofilm-forming and high metabolic activity clinical isolates of C. parapsilosis. Our results showed good activity of amphotericin B against C. parapsilosis biofilms, but none of the echinocandin drugs was effective. This suggests that amphotericin B deoxycholate may be a better choice than echinocandins for the treatment of biofilm-associated infections by C. parapsilosis, mainly in countries with insufficient health care resources to purchase lipid formulations of amphotericin B. These results warn of the possibility of persistent catheter-related candidemia caused by high biofilm-forming C. parapsilosis strains when treated with echinocandin drugs.
Keywords: Amphotericin B; Antifungal resistance; Biofilm; Candida parapsilosis; Echinocandins; XTT.